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W e published our first work in the field of Ocular Drug
Delivery Systems simultaneously with two important

milestones related to intravitreal drug delivery (Fig. 1).1,2 First,
Macugen� (pegaptanib sodium) was approved by the United
States Food and Drug Administration (FDA) in 2004 for treating
the wet form of age-related macular degeneration, marking the
introduction of thefirst anti-VEGFdrug.3,4 Then, Avastin� (bev-
acizumab), another anti-VEGF drug approved for treating colo-
rectal cancer in 2004, began to emerge in 2005 as one of the
most commonly used off-label treatments in ophthalmology.5–10

However, our research began somewhat earlier, inspired by
numerous articles published on the intravitreal administration of
triamcinolone acetonide for the treatment of different diseases of
the posterior segment of the eye11–13 and by the importance of a
ganciclovir implant in the treatment of cytomegalovirus retinitis
in patients suffering from the acquired immunodeficiency syn-
drome.14,15 This implant (Vitrasert�) is a nonbiodegradable
device designed for sustained ganciclovir release to avoid its fre-
quent intravitreal dosing. Vitrasert� received FDA approval in
1996 and became the standard of care. This implant is no longer
marketed, but its place in history remains important.

The idea of bypassing the blood–ocular barriers with intravi-
treal dosing to treat chronic posterior segment diseases has pro-
ven effective. However, due to the need for repeated intravitreal
dosing tomaintain pharmacological activity in the posterior seg-
ment, intravitreal injections placed a substantial burden on the
patients.16,17 Thus, over the past 25 years, an enormous effort to
develop effective intravitreal therapies with reduced treatment
burden and frequency of administration has been ongoing. Intra-
vitreal delivery systems are great choices for prolonged release
of therapeutic levels of drugs in the vitreous, retina, and choroid,
increased bioavailability, and reduced systemic adverse effects.
In this context, some of our ocular drug delivery studies were
focused on developing slow-release implants based on biode-
gradable materials for intravitreal dosing. Our first drug of
choice was dexamethasone, a corticosteroid with a relative
anti-inflammatory potency six times greater than triamcinolone

and our poly(lactide-co-glycolide) (PLGA) implant was devel-
oped as a minimally invasive administration device, called
DDS-25G (drug delivery system dosed with a 25G needle).
Patented by the Brazilian National Institute for Intellectual
Property, this device was evaluated in a Phase I clinical trial
(Clinical Trial registry: NCT01662518). It was the first clinical
study of an intravitreal implant fully developed in Brazil.2,18–21

In this Phase I study, we demonstrated the feasibility of intravi-
treal DDS-25G insertion for the treatment of decreased vision
due to macular edema associated with retinal vein occlusion,
and no safety concernswere evident.21

The promising results obtained with the DDS-25G paved the
way for the development of implants containing other drugs.
Thus, various implant delivery systems containing immunosup-
pressants such as cyclosporine, mycophenolic acid, tacrolimus,
and sirolimus were developed and evaluated in preclinical stud-
ies intended for the treatment of uveitis,22–30 etoposide for the
treatment of intraocular tumors,31–33 and natural products for
their antiangiogenic activity.34–37 More recently, we developed
a DDS-25G containing rosmarinic acid and published this work
in “Planta Medica journal,” for which we received the “Most
Innovative Paper Award for 2020”.36

Of special note is a DDS-25G containing clindamycin,
developed to treat recurring cases of ocular toxoplasmosis or
for those patients allergic to medications normally used in
treatment protocols, which is a combination of pyrimethamine,
sulfadiazine, and corticosteroids, also known as the “conven-
tional triple therapy.”38,39 Posterior uveitis caused by toxo-
plasmosis is prevalent in Brazil. A retrospective study
reported 40% incidence of adverse effects related to the
medications commonly used (sulfadiazine, pyrimethamine,
sulfamethoxazole–trimethoprim, clindamycin, and atovaquone)
for the treatment of posterior uveitis caused by toxoplasmosis.
Therefore, in a special case study, we opted for the compassion-
ate use of a slow-release clindamycin intravitreal implant
(DDS-25G) to protect the retina of a patient for a much longer
time than a simple intravitreal injection of the drug. According
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to studies conducted in rabbits, this implant released doses of
clindamycin four times higher than a simple intravitreal injec-
tion and achieved concentrations above the 50% inhibitory con-
centration for Toxoplasma gondii for at least 6 weeks. The
clinical improvement observed in this patient, with gradual reso-
lution of intraocular inflammation and healing of the retinochor-
oidal lesion with cicatricial changes, suggests that the implant
may have contributed to the control of the parasite. To our
knowledge, this is the first report of the use of an intravitreal
slow-release clindamycin implant for the treatment of ocular
toxoplasmosis in humans.40–43

We have also developed DDS-25G containing other drugs,
such as thalidomide (antiangiogenic effect),44 fluconazole (anti-
fungal activity),45 vancomycin (used in the treatment of serious
Gram-positive bacterial infections),46 acetazolamide (carbonic
anhydrase inhibitor), and promising results have been obtained.
Among these, it is worth highlighting the case study with the
DDS-25G containing acetazolamide. In this case study, we
opted for the compassionate use of the implant to treat a case of
cystoid macular edema. After implant insertion, examinations
were performed during 4 months, and we observed that the
implant progressively decreased in size with the macular mor-
phology at the final follow-up showing no edema. To our
knowledge, this is the first report of intravitreal injection of an
acetazolamide implant in a human, and this case provides evi-
dence that it might be a treatment option based on further evi-
dence in studies to treat macular edema.47

During the progress of our research, the need to find new
options to prepare slow-release delivery systems for peptides
and proteins became evident since these drugs are labile and can-
not be formulated in our system due to their sensitivity to the
manufacturing processes. Therefore, other biodegradable poly-
meric materials including polycaprolactone (PCL) and polyur-
ethane have been considered to prepare the implants.48,49 PCL is
a biodegradable and biocompatible polymer suitable for con-
trolled drug delivery due to its ability to be fully excreted from
the body and the possibility of prolonged drug release.50,51 Bio-
degradable polyurethanes can be an interesting alternative for
manufacturing implants for soft tissue applications. Polyur-
ethanes can be tailored to display high elasticity and softness,
and they can also be easily chemically modified to exhibit chem-
ical functionalities that can interact with small and large mole-
cule drugs. In this context, the studies using polyurethanes

synthesized by our team have shown promising results for intra-
vitreal drug delivery.52–58

Polymeric nanofibers prepared using electrospinning technol-
ogy have been the best alternative developed by our group for
the preparation of drug delivery systems containing thermo-
labile substances.59–62 This approach does not require the use of
organic solvents during preparation, allowing the incorporation
of bioactive and hydrophilic drugs efficiently, without the risk of
losing structural conformation and activity. Biodegradable poly-
meric nanofibers allow the modulation of drug release due to the
flexibility of their composition. Based on these principles, we
developed an implant coated with polymeric nanofibers. Specifi-
cally, we developed an innovative device composed of a PLGA
implant coated with polymeric polyvinyl alcohol and PCL nano-
fibers, aiming for the delivery of dexamethasone from the core
and bevacizumab from the coat for treating age-related macular
degeneration (AMD). This new implant resulted in the reduction
of vessels and was safe for intravitreal use as demonstrated by
the clinical and histological analysis as well as by electroretinog-
raphy and optical coherence tomography.62 Considering that the
nanofiber-coated implants allow the sustained delivery of two
drugs at the same time, they may be able to reduce the side
effects associated with frequent intravitreal administrations,
thereby increasing patient compliance. By targeting VEGF as
well as inflammatory events, the delivery system developed in
thisworkmay offer a new and effective treatment forAMD. Fur-
thermore, the concept of implants coated with nanofibers to
deliver two or more drugs can be applied to other diseases of the
eye. Thus, a new and promising drug delivery system has been
developed by our group, and studies are underway to improve this
system.

The first biodegradable implant for intravitreal therapy
(Ozurdex�-dexamethasone intravitreal implant) gained FDA
approval in 2009 for the treatment of macular edema after reti-
nal vein occlusion or central vein occlusion. This implant
offers sustained release of dexamethasone in the vitreous cav-
ity, and this novel drug delivery system has proven useful both
in improving clinical outcomes and in reducing injection bur-
den, and its utilization continues to expand for the treatment of
other vitreoretinal disorders.63,64 However, several challenges
remain to be addressed, such as expanding the drug-carrying
capacity and ensuring the possibility of sustained peptide and
protein delivery. The development of implants for intravitreal
delivery of protein drugs is crucial to broaden the

FIG. 1. Timeline of preclinical/clinical implant development and commercial milestones. The upper section highlights
milestones from our research group in purple. Dashed lines indicate the first publication for each implant developed,
including their respective drugs and polymers used. The lower section shows commercial milestones, in blue, along
with their corresponding drugs and polymers. PVA, polyvinyl alcohol; EVA, ethylene vinyl acetate; PLGA, poly(lac-
tide-co-glycolide); PCL, polycaprolactone; PU, polyurethane.
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antiangiogenic therapy options for retinal and choroidal neo-
vascularization. Moreover, the possibility of combination
therapies, such as anti-inflammatory drugs together with anti-
VEGF or other biomolecules, for more personalized medicine
seems to be an interesting option.

The development of drug delivery systems for the treatment
of diseases that affect the anterior segment of the eye and the
discovery of new drugs for the treatment of ocular disorders is
also an objective of study of our research group. In total, our
group co-authored 129 scientific papers on ocular drug delivery
systems and 4 patents that have been licensed, in addition to sev-
eral conference proceedings. The development of drug delivery
systems for the treatment of diseases of the posterior segment of
the eye has been our most important contribution to the ocular
pharmacology and therapeutics field.

This editorial highlighted the articles published by Fialho SL
and Silva-Cunha, a team from 2002 until date, with an emphasis
on drug delivery systems for the treatment of diseases of the
posterior segment of the eye. Obviously, many other research
groups work in this area, and the number of articles published
on this topic in recent years is remarkably high. To add to the
understanding of the state of the art in this field, we refer the
readers to some reviews published in the last 10 years that
describe implant drug delivery systems, developed with nonbio-
degradable or biodegradable materials, intended for intravitreal
administration.65–70
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